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Abstract—The problem of a plane crack in an inhomogeneous material with certain elastic
coefficients which exhibit slight variations along the direction perpendicular to the crack is examined
in this paper. A series form solution to the problem is proposed and analytical expressions for the
first two terms of the series are obtained using a Fourier transform technique. Approximate
expressions for the relevant stress intensity factors are also derived.

1. INTRODUCTION

The solution of the problem of a crack in an inhomogeneous material with elastic coefficients
which are varying continuously in space presents enormous mathematical difficulties. Hith-
erto, the problem has been considered only for special cases where the deformation is
antiplane or the shear modulus of the material assumes certain specific forms (see, e.g.
Clements et al.[1] and Dhaliwal and Singh|[2]).

In this paper, we examine the problem for an inhomogeneous material which satisfies
the conditions of either an antiplane deformation or plane strain. For the case of an
antiplane deformation, the shear modulus of the material is assumed to exhibit a slight
variation along the direction normal to the crack. For the case of plane strain, Young’s
modulus of the material varies in a similar fashion, while Poisson’s ratio is taken to be a
constant. A solution to the problem in series form is assumed. Through the use of a Fourier
transform technique, analytical expressions for the first two terms of the series are obtained.
Under appropriate conditions, the truncated series obtained by retaining only the first two
terms of the series solution provides us with a good approximate solution to the problem.
Approximate expressions for the relevant stress intensity factors can then be derived using
this solution. Specific cases of the problem (e.g. where the shear elastic modulus shows a
linear variation and the stresses act uniformly on the crack) are considered.

2. BASIC EQUATIONS

Neglecting the effect of body forces, the equilibrium equations of an elastic material
are given by

g,

0 (1)

where i, j = 1, 2, 3; x; are the Cartesian coordinates and o;; are the Cartesian stresses. The
usual convention of summing over a repeated Latin suffix is adopted here.
For isotropic materials, the stresses o, are related to the strains e;; by

o".j = 2#e,~,-+).5ij€kk (2)

where 4 and g are the Lamé constants (u is often called the shear modulus), d;; is the
Kronecker delta and the strains e,; are defined as
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1 ((7141 + ou; 3
e, =z—+ = :
T20\éx,  dx, =

where i, arc the Cartesian displacements.
Inverting eqn (2), we obtain

=(H-v) v

€ij E Oi; — Eéa'jakk (4)

where v is Poisson’s ratio and E is Young’s modulus.
For convenience, from now on, we adopt the notations

=X, Y=X3, Z=X3, UTU, UV=U;, W=Us,

Oxx Oy y  Oxz €xx €y y  €xz
(o] = Oyx Oyy Oy | and  [e;] = €y &y |
Tx Uzy O €z ezy €z

2.1. Antiplane deformation
An elastic material is said to undergo an antiplane deformation if u = 0, v =0 and w
is independent of z. Hence for an antiplane deformation the only non-zero stresses are

_ _ o ow 0w 5
ze_azx—#ax9 o.yz_azy—“'é;- ()
From eqn (1) we then have
0 ow o[ ow
= 05) <5 05) - ©

We assume that the shear modulus u takes the form

p= po+ef(y) (N

where p, is a constant, ¢ is some constant parameter such that |¢f « 1 and f is a given
continuous and differentiable function of y. Substituting eqn (7) into eqn (6), we obtain

ow
Viw+ef (y)— =0 (8
uViw Sf(y)ay )

where the prime denotes differentiation with respect to the relevant argument and V7 is the
Laplacian operator.
We propose a solution to eqn (8) in the form

w= i ' Pa(x,y). )

n=0
From eqns (5) the stress g, is then given by
0,. = 6\ +e0l) + O(e?) (10)

where
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Gy, = o7 (ll)

and

aip) = #oaad)l +f(y )ag}’f (12)

Substituting eqn (9) into eqn (8) and then equating the coefficient of each power of ¢
to zero, we obtain

Vig, =0 (13)

and

a¢n 1

Vig, = ———[f(y)V bn-1+/'(9) :I for n>0. (14

2.2. Plane strain

An elastic material satisfies the conditions of plane strain if # and v are independent
of z and w = 0. From eqns (1)-(3) the equilibrium equations for the elastic material are
then

do,, 0o,

ax Ty =Y

S0 | 90n _ )
0x ay

We introduce the stress function ® = ®(x, y) defined in such a way that

*® o’ 0

Gxx=€—yy, ny=—5x'a—y; O'yy==—a?. (16)

The stresses as given in eqns (16) satisfy the equilibrium equations (15) exactly.
Now from eqn (3) we have the compatibility of strain condition

2 2 2
- 0%l aey,_za €xy

3 T = %axdy (17

Taking Poisson’s ratio v to be constant and assuming that Young’s modulus E is of
the form

E = Ey+eh(y) (18)

where E, is a constant and 4 is a given continuous and differentiable function of y, through
the use of eqn (4) and eqns (16) and (17) we obtain
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) ) . Z(D , 2
E3V2V‘¢)+[2E(8h’(y))‘~E‘£/z"(y)](fq - Gq’)

~A 2 T T
oyt =y ax?

.. 30 do
= 2E-¢h (y) (m + a‘yi) (19)

If we assume that eqn (19) admits a solution of the form

O =Y rO,x.) (20)

n=0

then from eqns (16) we may write

0. = 60 +eall) 4+ 0(),
0, =0 +eol) +0(), (2D

{
a,, = o, +eay,) + O(e?),

where (fori =0, 1)

0 oo, a0 0, o _ O,
Oy = a_yz» ) J.x‘_t‘ = - aﬁ} s 0)’_»' = b;’i‘ . (22)

Using eqns (4), (16) and (20) and assuming that jgh/Ey] « 1, the displacements u and
v can be written as

u=u+eV+0(*), v=0v"+e'"+0(c?) (23)

(

where 4'%, 4", »'¥ and v'? are given by

out® 1
y = o (=)o v+
2 0
aum 1 , ou'?
_ _ o __ Nt —
dx E, [(] vdan =)oy ~h) 5 il’
ovt® 1
= £ (=0 =1+
0
24
N (24)

——=—=| (1=v)al) —v( +v)a(”—h(y)av—(m
ay Eo it xx ay s

¥ + wu? _2(1+v)

o' uth 2(I+V)[m h(y) <0):\
R - |

If we are interested in only the first two terms of the series solution (20) then by
substituting (20) into (19) we find that it is only necessary to solve

ViVid, =0 (25)

and
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wep, = 4 2
ViV, E, (26)
where
N AN v 0%, ) (alcpo a%po)

3. AN ANTIPLANE CRACK PROBLEM

3.1. Statement of the problem

Consider an infinite elastic material whose shear modulus u is given by eqn (7) with f
being an even function of y. The material contains a crack in the region |x|] < @, y = 0 (where
a is a given positive constant). The material is subject to a small antiplane deformation. An
internal stress o,, = so(x) (where s, in an even function of x) acts on the crack and
the displacements and stresses vanish at infinity. The problem is to determine the stress
distribution in the neighbourhood of the crack. More specifically, we are interested in
calculating the stress intensity factor X defined by

K= 1im+ (x—a)"%6,,(x,0). (28)

From eqn (10) K can be written as

K=K9+eKD40() (29)
where
K = lim (x—a)"26\2(x,0), K = lim (x—a)"2a{)(x,0) (30)

where o}y’ and ¢}’ are defined in eqns (11) and (12), respectively.
From the symmetry about the y-axis, the problem described above is equivalent to the
problem of solving eqn (8) subject to the boundary conditions
w=0 for |x|>a, y=0 3hH
and

0,; = 5o(x) for |x|<a, y=0. (32)

If we make the assumption that this boundary value problem has a solution of the form of
eqn (9) and if we are interested in only the first two terms of the series solution (9) then
from eqns (9)-(14) and (31) and (32) the problem can be replaced by a set of two problems.

Problem 3.1. Solve eqn (13) subject to
¢o=0 for |x]>a y=0 (33)
and

ol =s50(x) for |x|<a, y=0. (34)
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Problem 3.2, Solve

. “(»)
vig, = — 1) 0% (35)
py 0y
subject to
¢,=0 for |x|>a, y=0 (36)
and
o) =0 for |x|<a, y=0. 37
3.2. Solution of Problem 3.1
If we let
l o0
¢ = ;L E(&) exp (—<y) cos (£x) d& (38)
where E(¢) is defined as
E@) = L r(1) Jo(&0) dr (39)

where J(x) is a Bessel function of order zero and r(¢) is a function yet to be determined, it
can be readily verified that eqns (13) and (33) are satisfied.
From eqns (11), (38) and (39) and interchanging the order of integration, we obtain

0P (x,0) = — % J: r(t)ad)—cf0 Jo(€1) sin (Ex) d€ de. (40)

Using the results (see Watson[3])

w _ 0, for0<x<t
L Jo(&h) sin (Ex) d = {(xz_tz)—l/z, fort < x < o (41)
it follows that eqn (40) becomes
min (x, a)
© Mo d ¢ r(t) dt 4
0= -Tnl e *2)
Hence from eqn (42) condition (34) reduces to
d [* r@)d: T
d—x“[ -(-;2(—);2—)7‘/“2‘ = — #—SO(X) for ‘X| <da. (43)
0 - 0
Equation (43) can be inverted to obtain
2t |' solu) du
0= o

From eqns (30) and (42) together with integration by parts, the stress intensity factor
K9 can be written as
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(). #0 r(a) ( 4 5)
n \/ Qa)
The value of r(a) can be evaluated either analytically or numerically using eqn (44).
3.3. Solution of Problem 3.2
Substituting eqns (38) and (39) together with
¢ = —J (F(&)+G(¢, ) exp (—&y) cos (§x) dS (46)

where F(£) and G(¢,y) are to be determined, into eqn (35) we obtain (after some sim-
plification)

oG ¢
e 224G = ——E(é‘)f 622 (47)

The general solution of eqn (47) is
G(Ey) = %E(é) exp (26) U 1) exp (—260) dr+C]

where C is an arbitrary function of &, Since we require the displacements and stresses to
vanish at infinity, the arbitrary function C is set to zero. Thus

Gi¢,y) = %E(C) exp (2-fy)J J (@ exp (—2¢1) dt. (48)
If we choose
F) = L v()Jo(¢1) d1—G(¢,0) (49)

where v(7) is to be determined, condition (36) is satisfied.
Using eqns (12), (41), (42), (46) and (49), we obtain

* oG
o (x,0) = f‘;U 3

'min (x, a) d
cos (£x) d¢ — chL a‘,’%,)‘—”—z]

y=0

) min (x, a) r(t) df
BT f - O
Hence from eqns (43) and (50) condition (37) is reduced to
d {* v(@)de ©0G 0
.(GJ; =7 =J; % lyeo cos (¢x) dE + f( )so(x) for |x|<a. (51

Inverting eqn (51) and using eqn (44), we obtain
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=2 cosw a6 1O

n r=0 Ho

From eqns (50) and (52), the stress intensity factor K" as defined in eqn (30) becomes
(after integrating by parts)

K = Zauo‘J‘“ J" cos (éu)r 5G
{ [}

= \/ (20) ) (7*_7(?)77:' ~(:}y dé du

=0

)

Ho o (€06 |
+7r lim (x—a) La—y.y cos (Ex) dE. (53)

x—a* =

Provided that the integrals in (53) exist and can be evaluated, the value of K" can then be
found.

3.4. Uniform shear
If we assume that a uniform shear acts on the crack, that is s¢(x) = —s5, (constant),
from eqn (44), r(r) is given by

iy =2 (54)
Ho
and hence from eqn (39) and the results (Watson[3])
L (&) dt = 3 (ad) (55)
E(&) becomes
B = ot ¢1e) (56)
Ho ¢

where J,(x) is a Bessel function of order one. From eqns (45) and (54) the stress intensity
factor K% is given by

Sod

JQa)

KO~

(57)

Consider now the following cases.

Case 3.1: f(y) = kiy| (k is a positive constant). From eqns (48) and (56) we have (for
y=0)

Tk J
66 = - 1 Gy + ) (58)
and hence
G ﬁ,_n_k al (a&) (59)

8y ud ¢

Using eqns (53) and (59), the stress intensity factor K*" is
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Sod 2 k

KV= -7
#o"\/(za)

(60)

From eqns (29), (57) and (60) and ncglecting O(c?) terms, the stress intensity factor K for

this particular case is given by
a eka
k= J(oh-5) ‘6”

With a proper interpretation of the parameters involved, result (61) may be seen to be
consistent with an approximation to a similar stress intensity factor obtained by Clements
et al.[1]. Result (61) clearly indicates that for this particular type of inhomogeneous material
with shear rigidity which increases with |y| the stress intensity factor is smaller in magnitude
than the corresponding factor for a material with constant shear modulus u,. Furthermore,
as the value of y, decreases in magnitude, the difference between these stress intensity
factors becomes more pronounced.

Case 3.2: f(y) = k exp (—alyl|) (k and a are positive constants). From eqn (48), we
have (for y 2 0)

k¢

G, y) =~ r@+29

E(Q) exp (—ayp). (62)

Differentiating eqn (62) partially with respect to y, we obtain

oG 474

5}7 = mﬂf) exp (—ay). (63)

Now from egn (63)

|5
0 6y

The function E(¢) as given in eqn (56) is finite along the interval 0 < ¢ < o0. Its asymptotic
behaviour for large £ then indicates the last integral in eqn (64) is bounded for x > a. Hence
from eqns (53) and (63) (after interchanging the order of integration)

cos (&x) dé‘ = ? Jw ¢EQ)

ke
) r2d) 0 df’<m‘[j IE@)| & (64)

y=0

o 2aka [ SE(§) [° cos (¢w)
K”‘n&/(za)ﬁ (a+2¢)£ @—uym % % )

Using the results (Watson[3])

2 (*cos (¢u) du

o R U Jo(&D) (66)

eqn (65) together with eqn (66) gives

KO = soa’ka Jm Jo(ad)J (ad) d¢

tor/ (2a) Jo (x+2¢) 67

The integrand of the integral in eqn (67) behaves as O(1/£?) for large &. Hence the infinite
integral converges slowly. To speed up its convergence, we rewrite it as
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Fig. 1. Antiplane problem : variation of uK"/sok against a for the case where
B = po+ekexp (—afy).

“Jo@diad , [*1[ & 1 - |
L (0 +28) d¢ "L E[a__:z—é“‘i:'-lo(aé)-ll(aé) dé'*‘L i‘lo(aé)-lx(aé) dé.

(68)

The first integral on the right-hand side of eqn (68) has an integrand which diminishes
rapidly as ¢ increases and the second integral is given by 1/n (see Watson[3]). Thus from
eqn (68) the stress intensity factor K'Y can now be easily evaluated using an ordinary
numerical integration scheme.

In Fig. 1, we plot uoK"/sek against « for various values of a. From the graphs, it is
clear that as « increases K'" increases. Also, for a given value of a, a larger value of a gives
rise to KV of higher magnitude. The results clearly indicate that for a material with shear
modulus u = pg+ek exp (—aly|) the stress intensity factor K is larger than the cor-
responding factor for a material with shear modulus y,.

4. A PLANE CRACK PROBLEM

4.1. Statement of the problem

In this section, we consider the problem of determining the stress distribution in the
vicinity of a straight crack in an infinite isotropic material which satisfies the conditions of
plane strain. Poisson’s ratio v of the material is assumed to be constant while Young’s
modulus E varies as in eqn (18) with 4 being an even function of y. On the crack, which
lies in the region |x| < a,y = 0, we require the stresses g,, and o,, to be such that 6,, = 0
and 6,, = po(x) (Where p, is an even function of x). It is also required that the displacements
and stresses vanish at infinity. Of particular interest to us here is the calculation of the stress
intensity factor K, defined by

K, = lim (x—a)"?0,,(x,0). (69)

From eqn (21), eqn (69) may be rewritten as
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K, = K9 4¢K{"+0(e%) (70)

where

K9 = lim (x—a)"a{)(x,0),
X=—a

n

K}n = 111’[1 (x—a)‘lzdw(x’ 0)‘

x—a

Due to the symmetry of the problem about the y-axis, the problem may be posed as a
boundary value problem which involves solving eqn (19) subject to

o, =0 forall valuesof x, y=0 (72)
g,, = pe(x) for |x|<a, y=0 (73)

and
v=0 for |x]>a y=0. (74)

If the first two terms of eqn (20) can provide us with a good approximation to ® then from

eqns (21)-(27) and (72)-(74) this boundary value problem may be replaced by Problems
4.1 and 4.2 below.

Problem 4.1, Solve eqn (25) subject to

oY =0 forall valuesofx, y=0 (75)
ol9 =po(x) for |x]<a, y=0 (76)

and
V9 =0 for |x|>a y=0. 7

Problem 4.2. Solve eqn (26) subject to

o) =0 forall valuesof x, y=0 (78)
o =0 for |xl<a, y=0 (79)

and
D=0 for |x|>a, y=0. (80)

Note that 6%, 6!} and v (for i = 0, 1) are defined in eqns (22) and (24).

4.2. Solution of Problem 4.1

It can be readily verified through direct substitution that eqn (25) admits solution of
the form (see Sneddon[4])

2 w0
@0=2| "B 1 +e9) exp (~09) cos (@0 a (81)

where B(£) is yet to be determined.
From eqns (22)-(24) and (81), we obtain
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2
o = —-j B(E) (1+Ep) exp (—&y) cos (£x) de (82)

2 A
o = — ;I‘YJ; EB(S) exp (—&y) sin (¢x) dE (83)
and

cos (éx)

21
SO = (;V) j B(&) (21 —v)+Ep) exp (&) d¢. (84)

Note that the stress 69 as given by eqn (83) satisfies condition (75).
Through the use of eqns (76), (77), (82) and (84) and performing a similar analysis as
in Section 3.2, (&) is found to be

B(&) = C'L R()Jo(E1) dt (85)
where
* polu) d
R() = —zL J%i)—z)f%. (86)

The use of eqns (71), (82), (85) and (86) together with integration by parts yields

2 R(a)

= = : 87
i 7 J(a) (87
4.3, Solution of Problem 4.2
The function ®, defined by
2% «
D (x,y) = ;L G(&,») exp (—&y) cos (§x) & (88)
is a solution of eqn (26) if the function G (¢, y) satisfies
4 3 0* G 1
o' 45‘7—‘5 e [-——-—h"( ) (20— 1)+4h’(_)‘):}- (89)
* (I-v)
The general solution of eqn (89) is
G(&,y) = G, (&, )+ A+By+C exp (24y)+ Dy exp (28y) (90)

where A4, B, C and D are arbitrary functions of £ and Gp(é, y) is given by

G,(&y) = —exp(2%y) J ' W(, Drexp (—2Endr+yexp (26y) | W(E, exp(—2{nds
on

where W(¢, y) is defined by
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W,y = E[(i% [26(1 -ZV)J h(f) dt+(Ey—2v— l)h(,v)]- 02

Since we require the displacements and stresses to vanish at infinity, it is necessary to
set the function C and D to zero. The use of condition (78) yields

oG,
AE—B = ‘ay”

=O—CGP(€, 0) (93)

Y
If we assume that the stress o)) is such that
o) =p(x) on y=0

then from eqn (22) and through the use of a Fourier inversion theorem (in Sneddon[4]) we
obtain

A= y—é? ~ G,(£,0) (94)

where y(£) is defined by
7(6) = -—J; p(u) cos (Eu) du.

From eqns (93) and (94), B is given by

B=———~ . 95)

To recapitulate, a solution to eqn (26) which satifies condition (78) may be given by

. ) %
an=f[L [Gp@,y)ﬁ@—Gp<¢’°>+<z@*—£ )y]

iz £ oy
x exp (—¢&y) cos (¢x) d¢. (96)

The task now is to determine y(¢) which satisfies the remaining two boundary conditions
of the problem, namely eqns (79) and (80).
Through the use of eqns (22), (24) and (96), we obtain

_v? 0
o) = XD [0y zp0 | s @rae o

o})(x,0) = — %L (&) cos (éx) d¢ (98)

where
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1 9°G, 3 9%,
YO-z5 L " o
__2h(0)  @v=1E(0)
Z@) = EZ T EdionE (100)
If we substitute
) = — %[X(é)whl(é)ﬁ(é)—J0 MO dt} (101)

where S(2) is to be determined, into eqn (97) then condition (80) is satisfied. Together with
eqn (98), condition (79) yields

d ' (xs(')f;’,,z Ax) for |x|<a (102)
where
7h(0 - IO ¢ R@dr  [*
A = 2y - SO RO [ exeycos ey ez 109

Inverting eqn (102), we have

S = af (IA(“) glll/z (104)

From eqns (71), (86), (98), (101), (103) and (104) together with integration by parts,
we obtain

2 e X
ki = 712\/((120)[.[) f (aé @;”’ cos (u) dc du

2v—1)#(0) f J R(1) dr du }
- EO(I—V) o u(az_uz)uz(tz_uz)uz

l hm (x—a)'? J‘w EX(E) cos (&x) dE. (105)

n X-‘ﬂ

4.4, Uniform pressure
If a uniform pressure py(x) = —p, (constant) acts on the crack then eqn (86) gives

R(@) = 5ot (106)
and from eqn (87) the stress intensity factor K} is

o _Pod 107
K Jea (107)

Substituting eqn (106) into eqn (85) and using eqn (55), we obtain
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n

B =3

PoaJ (ad). (108)

We now consider the case where Young's modulus E is given by
E = Eg+ekly| (109)

where k is a positive constant.
From eqns (91) and (92) and (108) and (109) and differentiating, we obtain

9y |y=o 2E o
A
ay3 y=0 )
Using the results (Watson[3])
“J,(&a) N (1-x*/a®)'?, for0<x<a
L — o8 (¢x) dé = {0, for d < x < o @arn

and from eqns (99), (105), (106) and (110), the stress intensity factor K}" obtained is found
to be

2 21
Kip = — kPod <3+ 4 ) (112)
tEeJ2a)\" | 1=

Hence from eqn (69), neglecting O(g?) terms, the stress intensity factor X, is given by

a 3cka gka 2v-1)
K =\/<5)”°[1 T E, "k, (i—v)]’ (113)

The stress intensity factor (113) for the plane case indicates behaviour which is qualitatively
consistent with the corresponding result (61) and it agrees with that obtained in Rogers
and Clements[5] for the case v = 1/2. That is, the stress intensity factor for a crack in a
material with Young’s modulus as given in eqn (109) is less than the corresponding factor
for a material with Young’s modulus E;. The magnitude of the difference between these
two stress intensity factors decreases as E, increases. In addition, since for compressible
materials Poisson’s ratio v satisfies 0 < v < 1/2, it follows that from eqn (113) the magnitude
of the difference between the stress intensity factors for the homogeneous and inhomo-
geneous materials is bounded below by 2a./ap.ek/(\/2nE,) and above by
3a\/apoek/(\/2nE,).

5. SUMMARY

The analysis given in this paper provides us with a means to assess the effect of
inhomogeneities on the stress intensity factors for both antiplane and plane crack problems.
We assume that the variation of the shear modulus or Young’s modulus is slow along the
direction perpendicular to the crack. A series form solution to the problem is proposed and
the first two terms of the series are obtained by using a Fourier transform technique. As
seen in Sections 3.4 and 4.4, for simple variation of this modulus, simple analytical formulae
for the first two terms of the stress intensity factors can be obtained when the stresses acting
on the crack are constant. If the variation is more complicated, it may still be possible to
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reduce the expressions for the stress intensity factors to some simpler forms which can then
be evaluated numerically (see case 3.2 in Section 3.4). It may be possible to extend the
analysis given here to the case where the variation of the modulus is parallel to the
crack. Nevertheless, the analysis may become more involved and complicated than the one
presented here and it may not be possible to obtain explicit expressions for the stress
intensity factors.

REFERENCES

1. D. L. Clements, C. Atkinson and C. Rogers, Antiplane crack problems for an inhomogeneous elastic material.
Acta Mech. 29, 199 (1978).

. R. S. Dhaliwal and B. H. Singh, On the theory of clasticity of a nonhomogeneous medium. J. Elasticity 8, 211
(1978).

. G. N. Watson, 4 Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922).

. 1. N. Sneddon, Fourier Transforms, 1st Edn. McGraw-Hill, New York (1951).

. C. Rogers and D. L. Clements, Bergman’s integral operator method in inhomogeneous elasticity. Q. Appl.
Math. 36, 315 (1978).

N

WD



